An Open Problem in the Combinatorics of Macdonald Polynomials

نویسندگان

  • Gabe Davis
  • Aaron Maurer
  • Julie Michelman
  • Eric Egge
چکیده

Although a combinatorial interpretation of Macdonald polynomials involving fillings of Ferrers diagrams of partitions has been known since 2004, a general combinatorial proof of a well-known symmetry property of these polynomials remains elusive. Our paper frames the problem and discusses an already-solved special case, that of one-dimensional (single-row or single-column) Ferrers diagrams, and then give our solution for a new special case, that of hookshaped Ferrers diagrams with standardized (non-multiset) fillings. We then discuss remaining issues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synopsis: Dual Equivalence Graphs, Ribbon Tableaux and Macdonald Polynomials

The primary focus of this dissertation is symmetric function theory. The main objectives are to present a new combinatorial construction which may be used to establish the symmetry and Schur positivity of a function expressed in terms of monomials, and to use this method to find a combinatorial description of the Schur expansion for two important classes of symmetric functions, namely LLT and M...

متن کامل

A probabilistic interpretation of the Macdonald polynomials

The two-parameter Macdonald polynomials are a central object of algebraic combinatorics and representation theory. We give a Markov chain on partitions of k with eigenfunctions the coefficients of the Macdonald polynomials when expanded in the power sum polynomials. The Markov chain has stationary distribution a new two-parameter family of measures on partitions, the inverse of the Macdonald we...

متن کامل

Kostka–Foulkes polynomials and Macdonald spherical functions

Generalized Hall–Littlewood polynomials (Macdonald spherical functions) and generalized Kostka–Foulkes polynomials (q-weight multiplicities) arise in many places in combinatorics, representation theory, geometry, and mathematical physics. This paper attempts to organize the different definitions of these objects and prove the fundamental combinatorial results from “scratch”, in a presentation w...

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

The Combinatorics of Macdonald ’ S D

Abstract. To prove the existence of the Macdonald polynomials {Pλ(x; q, t)}λ`n, Macdonald [Séminaire Lotharingien Combin. 20 (1988), Article B20a; “Symmetric functions and Hall polynomials”, 2nd ed., Clarendon Press, New York, 1995] introduced an operator D n and proved that for any Schur function sλ(x1, . . . , xn), D 1 n(sλ(x1, . . . , xn)) = ∑ μ dλ,μ(q, t)sμ(x1, . . . , xn) where the sum run...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011